skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Saltzman, Matthew R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Shallow-water platform carbonate δ13C may provide a record of changes in ocean chemistry through time, but early marine diagenesis and local processes can decouple these records from the global carbon cycle. Recent studies of calcium isotopes (δ44/40Ca) in shallow-water carbonates indicate that δ44/40Ca can be altered during early marine diagenesis, implying that δ13C may also potentially be altered. Here, we tested the hypothesis that the platform carbonate δ13C record of the Kinderhookian-Osagean boundary excursion (KOBE), ∼353 m.y. ago, reflects a period of global diagenesis using paired isotopic (δ44/40Ca and clumped isotopes) and trace-element geochemistry from three sections in the United States. There is little evidence for covariation between δ44/40Ca and δ13C during the KOBE. Clumped isotopes from our shallowest section support primarily sediment-buffered diagenesis at relatively low temperatures. We conclude that the δ13C record of the KOBE as recorded in shallow-water carbonate is consistent with a shift in the dissolved inorganic carbon reservoir and that, more generally, ancient shallow-water carbonates can retain records of primary seawater chemistry. 
    more » « less
  2. Rising oceanic and atmospheric oxygen levels through time have been crucial to enhanced habitability of surface Earth environments. Few redox proxies can track secular variations in dissolved oxygen concentrations ([O2]) around threshold levels for metazoan survival in the upper ocean. We present an extensive compilation of iodine to calcium ratios (I/Ca) in marine carbonates. Our record supports a major rise in atmospheric pO2 at ~400 million years ago (Ma), and reveals a step-change in the oxygenation of the upper ocean to relatively sustainable near-modern conditions at ~200 Ma. An Earth system model demonstrates that a shift in organic matter remineralization to greater depths, which may have been due to increasing size and biomineralization of eukaryotic plankton, likely drove the I/Ca signals at ~200 Ma 
    more » « less